Selasa, 31 Januari 2017

Cara membuat cake pisang yang enak

Cake pisang ini rasanya sangat begitu istimewa dan lezat untuk anda nikmati dan membuat bagi siapa saja yang mencobanya terus ketagihan. Cake pisang ini berbahan dasar dari pisang sebagai bahan campurannya cake pisang ini tidak begitu sulit untuk bahan-bahannya dan membuatnya. Sama saja dengan cake yang lainnya yang sering di buat cake ulang tahun dan sebagainya. Bagi anda yang sering dan suka membuat kue bolu tentunya ini resep bisa di bilang mudah, tetapi bagi anda yang belum pernah membuat kue bolu, jangan khawatir, resep kali aini bisa membuat anda bisa membuatnya di rumah anda. Membuat cake ini tergantung pada pengocokan awalnya pada bahan-bahan kue bolu, supaya adonan lebih baik dan sempurna akan lebih baik anda mengkocoknya menggunakan mixer, karena dengan mixer hasilnya bisa lebih sempurna dan pergerakkannya pun bisa stabil, beda jauh sekali dengan menggunakan tangan. Supaya kue cakenya lebih maksimal anda tinggal ikuti resep dan prosesnya dibawah ini :
resep cake pisang
Cara membuat cake pisang yang enak
Bahan :
Advertisement
  • Pisang raja 3 bh, haluskan dengan blender
  • Tepung terigu 100 gr
  • Telur ayam 2 btr
  • Gula pasir 100 gr
  • Mentega 3 sdm
  • Baking powder 1 sdt
  • Vanili bubuk 2 sdt
  • Coklat yang bubuk 20 gr
  • Garam 1 sdt
Cara membuat cake pisang :
  1. Cairkan mentega kedalam panci yang sudah di panaskan oleh api yang sedang. Untuk membuat adonan cake, siapkan sebuah wadah lalu masukan telur dan gula lalu kocok dengan mixer hingga benar-benar mengembang dan jadi warna putih.
  2. Untuk tepung terigu agar lebih lembut bisa di ayak terlebih dahulu, lalu masukan dan campurkan kedalam adonan hingga rata. Masukan coklat yang bubuk dan garam kedalam adonan aduk kembali sampai adonan tecampur rata dan halus.
  3. Masukan baking powder, vanili bubuk dan pisang yang sudah dihaluskan, aduk kembali hingga merata. Masukan kembali mentega yang sudah dicairkan sampai rata aduk kembali.
  4. Siapkan panci dan isi air sesuaikan karena untuk mengukus dengan menggunakan api yang sedang agar matangnya merata
  5. Siapkan loyang yang sudah diolesi dengan mentega dan ditaburi tepung terigu di atas mentega agar adonan tidak lengket dan menempel. Masukan adonan ke loyang dan kukus dengan menggunakan panci hingga benar-benar matang merata.
  6. Angkat dan sajikan di atas piring. Supaya hasilnya lebih sempurna boleh di tambahkan dengan parutan keju di atasnya.
Demikian resep cake pisang spesial dan tampilannya yang begitu menarik sehingga anda lebih menggoda kepada anda yang belum pernah mencobanya selamat mencoba di rumah anda, semoga berhasil dan bermanfaat.

fungsi


Senin, 23 Januari 2017

induksi matematika

Induksi matematika (mathematical induction) adalah metode pembuktian yang sering digunakan untuk menentukan kebenaran dari suatu pernyataan yang diberikan dalam bentuk bilangan asli. Akan tetapi sebelum membahas mengenai induksi matematika, kita akan membahas suatu prinsip yang digunakan untuk membuktikan induksi matematika, yaitu prinsip terurut rapi (well-ordering principle) dari bilangan asli. Seperti kita ketahui, himpunan bilangan asli adalah himpunan yang memiliki anggota 1, 2, 3, … yang dapat dituliskan sebagai berikut.
Himpunan Bilangan Asli
Setelah mengingat mengenai himpunan bilangan asli, sekarang perhatikan prinsip terurut rapi dari bilangan asli berikut.
Prinsip Terurut Rapi Bilangan AsliSetiap himpunan bagian yang tidak kosong dari N memiliki anggota terkecil.
Secara lebih formal, prinsip tersebut menyatakan bahwa untuk setiap himpunan tidak kosong V yang merupakan himpunan bagian dari N, maka ada v0 anggota V sedemikian sehingga v0 ≤ v untuk setiap v anggota V.
Berdasarkan prinsip terurut rapi di atas, kita akan menurunkan prinsip induksi matematika yang dinyatakan dalam bentuk himpunan bagian N.
Prinsip Induksi MatematikaMisalkan S adalah himpunan bagian N yang memiliki 2 sifat:
(1) S memiliki anggota bilangan 1; dan
(2) Untuk setiap k anggota N, jika k anggota S, maka k + 1 anggota S.
Maka diperoleh S = N.
Sebelum membuktikan prinsip induksi matematika di atas secara formal, kita akan mencoba memahaminya dengan menggunakan efek domino seperti berikut.
Efek Domino
Pada gambar (a) di atas kita melihat sebaris 4 domino pertama yang ditata rapi dengan jarak antara masing-masing domino yang berdekatan kurang dari tinggi domino. Sehingga, jika kita mendorong domino nomor k ke kanan, maka domino tersebut akan merebahkan domino nomor (k + 1). Proses ini ditunjukkan oleh gambar (b). Kita tentu akan berpikir bahwa apabila proses ini berlanjut, maka domino nomor (k + 1) tersebut juga akan merebahkan domino di sebelah kanannya, yaitu domino nomor (k + 2), dan seterusnya. Bagian (c) menggambarkan bahwa dorongan terhadap domino pertama merupakan analogi dari bilangan 1 menjadi anggota himpunan S. Hal ini merupakan langkah dasar dari proses efek domino. Selanjutnya, jika k anggota S akan menyebabkan (k + 1) anggota S, akan memberikan langkah induktif dan melanjutkan proses perebahan domino. Sehingga, pada akhirnya kita akan melihat bahwa semua domino akan rebah. Atau dengan kata lain, domino yang memiliki nomor urut semua bilangan asli akan rebah. Hal ini merupakan analogi dari S = N. Bagaimana dengan bukti formal dari prinsip induksi matematika?
Bukti Andaikan S ≠ N. Maka himpunan N – S bukan merupakan himpunan kosong, sehingga berdasarkan prinsip terurut rapi, himpunan tersebut memiliki anggota terkecilm. Karena 1 anggota S (berdasarkan hipotesis 1), maka m > 1. Tetapi hal ini akan mengakibatkan bahwa m – 1 juga merupakan bilangan asli. Karena m – 1 < m dan madalah anggota terkecil dari N – S, maka m – 1 anggota S.
Sekarang kita akan menggunakan hipotesis 2 bahwa k = m – 1 merupakan anggota S, maka k + 1 = (m – 1) + 1 = m juga anggota S. Akan tetapi pernyataan ini akan kontradiksi bahwa m bukan anggota S. Sehingga N – S adalah himpunan kosong atau dengan kata lain N = S.
Selain diformulasikan seperti di atas, Prinsip Induksi Matematika juga dapat dinyatakan sebagai berikut.
Untuk setiap n anggota N, misalkan P(n) merupakan suatu pernyataan tentang n. Apabila:
  1. P(1) benar.
  2. Untuk setiap k anggota N, jika P(k) benar, maka P(k + 1) benar.
Maka P(n) benar untuk setiap n anggota N.
Hubungan Prinsip Induksi Matematika tersebut dengan sebelumnya adalah dengan memisalkan S = {n anggota N | P(n) adalah benar}. Sehingga kondisi 1 dan 2 pada Prinsip Induksi Matematika di awal secara berturut-turut berkorespondensi dengan kondisi 1 dan 2 pada Prinsip Induksi Matematika terakhir. Selain itu, kesimpulan S = N juga berkorespondensi dengan kesimpulan P(n) benar untuk setiap n anggota N.
Asumsi bahwa “jika P(k) benar” dinamakan hipotesis induksi. Untuk membangun hipostesis 2, kita tidak perlu menghiraukan kebenaran dari P(k), tetapi yang perlu kita hiraukan adalah validitas dari “jika P(k), maka P(k + 1)”. Misalkan, jika kita akan menguji pernyataan P(n): “n = n + 5”, maka secara logis kondisi (2) adalah benar, dengan menambahkan 1 pada kedua sisi P(k) untuk mendapatkan P(k + 1). Akan tetapi, karena pernyataan P(1): “1 = 6” adalah salah, kita tidak dapat menggunakan Induksi Matematika untuk menyimpulkan bahwa n = n + 5 untuk setiap n anggota N.
Pada beberapa kasus, kadang P(n) bernilai salah untuk beberapa bilangan asli tertentu tetapi bernilai benar untuk n ≥ n0. Prinsip Induksi Matematika dapat dimodifikasi untuk mengatasi kasus seperti itu.
Prinsip Induksi Matematika (versi kedua)Misalkan n0 anggota N dan misalkan P(n) merupakan pernyataan untuk setiap bilangan asli n ≥ n0. Apabila:
(1) Pernyataan P(n0) benar;
(2) Untuk setiap k ≥ n0, jika P(k) benar mengakibatkan P(k + 1) benar.
Maka P(n) benar untuk semua n ≥ n0.
Berikut ini adalah beberapa contoh yang menunjukkan bagaimana Induksi Matematika dapat digunakan untuk membuktikan pernyataan tentang bilangan asli.
Contoh 1: Pengubinan dengan Tromino
Diberikan suatu papan catur 2n × 2n (n > 0), dengan salah satu persegi di bagian pojok dihilangkan, buktikan bahwa papan catur tersebut dapat ditutup sempurna dengan tromino. (Tromino adalah gambar yang terdiri dari 3 persegi yang sisinya saling bersinggungan, tetapi 3 persegi tersebut tidak dalam satu barisan yang berjajar)
Bukti Pernyataan tersebut benar untuk n = 1 karena secara jelas papan catur 21 × 21 yang salah satu persegi bagian pojok dihilangkan memiliki bentuk yang sama dengan tromino. Andaikan pernyataan tersebut benar untuk k anggota N. Diberikan papan catur dengan ukuran 2k + 1 × 2k + 1 yang salah satu persegi di bagian pojok dihilangkan. Bagilah papan catur tersebut menjadi 4 papan catur 2k × 2k A, B, C, dan D, dengan satu di antaranya, yaitu A, memiliki bagian yang salah satu persegi di pojok hilang. Tempatkan 1 tromino, T, di tengah-tengah papan catur 2k + 1 × 2k + 1 sedemikian sehingga persegi-persegi tromino tersebut berada di bagian B, C, dan D. Kemudian gunakan kasus n = k untuk menutup bagian A, B – T, C – T, dan D – T dengan tromino. Proses tersebut akan menutup papan catur 2k + 1 × 2k + 1 tepat sempurna dengan tromino-tromino. (Gambar di bawah ini mengilustrasikan untuk kasus n = 3).
Papan Catur
Contoh 2: Jumlah n Bilangan Asli Pertama
Buktikan untuk setiap n anggota N, jumlah dari n bilangan asli pertama diberikan oleh rumus,
Contoh 2
Bukti Kita akan mencoba membuktikan pernyataan di atas dengan Prinsip Induksi Matematika yang dibahas di awal. Misalkan S adalah himpunan yang memuat n anggota Nsedemikian sehingga rumus di atas bernilai benar. Kita harus menguji apakah kondisi (1) dan (2) pada Prinsip Induksi Matematika terpenuhi. Jika n = 1, maka 1 = 1/2 ∙ 1 ∙ (1 + 1) sehingga 1 anggota S, dan (1) terpenuhi. Selanjutnya, andaikan k anggota S maka kita akan menunjukkan k + 1 juga akan menjadi anggota S. Jika k angota S, maka
n = k
Jika kita menambahkan k + 1 pada persamaan di atas, maka akan diperoleh
n = k + 1
Karena persamaan di atas merupakan pernyataan untuk n = k + 1, maka kita menyimpulkan bahwa k + 1 anggota S. Sehingga, kondisi (2) terpenuhi. Sebagai hasilnya, menurut Prinsi Induksi Matematika kita memperoleh bahwa S = N, atau dengan kata lain persamaan tersebut berlaku untuk semua bilangan asli. Semoga bermanfaat, 

makalah daya beda


ppt himpunan


ppt logika